Understanding the Salt Phase Diagram

https://clearroads.org/project/20-02/

WTI-MSU, WSU, Roadtech, Inc.

College of ENGINEERING

Acknowledgements

- Clear Roads Project Panel
 - Rhett Arnell, Brian Burne, Doug McBroom, Shannon McIntyre, James Morin, Aidan Neely, Tom Peters, and Daniel Varilek

CTC & Associates

- Greg Waidley
- Research Team
 - WTI
 - Laura Fay, Neil Hetherington, Mat Bell, Dana May, Carla Little, Alex Hetherington
 - WSU
 - Dr. Xianming Shi, Mueed Jamal, Dr. Mehdi Nazari
 - Roadtech, Inc.
 - Paul Brown

Why we did the Research

Project Goals

- Develop materials to aid winter maintenance practitioners in making informed decisions on the use of road salts
 - 1 page fact sheet
 - Educational video

Additional Project Work

- Literature Review
- Lab Demonstration
 - Beaker Test
 - Friction/Trafficking Test

Beaker Lab Test Results

- Documented the percentage of ice in salt solutions at varying temperatures
 - Salt brine Solutions: 21%, 22%, 23.3%, 24%, 25%, 26%, 27% and 28% (by weight of aqueous solution).
 - Test temperatures: 32°F (0°C), 30°F (-1.1°C), 25°F(-3.9°C), 20°F(-6.7°C), 15°F(-9.4°C), 10°F(-12.2°C), 5°F(-15°C), 0°F (-17.8°C), and -6°F (- 21.1°C).

			Α		В			С			D			E			F			G			Н		
	Concentrations	21 wt. %		22 wt. %			23 wt. %			24 wt. %			25 wt. %			26 wt. %			27 wt. %			28 wt. %			
32 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	Precipitating	×	×	×	×	×	×	*	×	×	×	×	×	×	×	×	✓	✓	 ✓ 						
25 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	~	✓	 ✓ 	~	 ✓ 	 ✓
	Precipitating	×	×	×	×	×	×	*	×	×	×	*	×	×	×	×	✓	~	✓	 ✓ 	 ✓ 	✓	~	✓	
20 F	Ice Formation	×	×	×	×	×	×	*	×	×	×	×	×	×	×	×	×	×	×	\checkmark	✓	✓	\checkmark	✓	\checkmark
	Precipitating	×	×	×	×	×	×	×	×	×	×	×	×	~	×	×	~	~	✓	~	~	~	~	~	~
15 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	~	\checkmark	✓	~	✓	✓	\checkmark	~	✓
	Precipitating	×	×	×	×	×	×	×	×	×	×	~	×	~	\checkmark	\checkmark	~	~	×	✓	×	✓	~	~	×
10 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Precipitating	×	×	×	×	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Precipitating	×	×	×	×	×	×	×	×	×	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0 F	Ice Formation	×	×	×	×	×	×	×	×	×	×	\checkmark													
	Precipitating	×	×	×	×	×	×	×	×	×	\checkmark														
-6 F	Ice Formation	×	×	×	×	×	×	×	×	×	\checkmark														
	Precipitating	×	×	×	×	×	×	×	×	×	\checkmark														

• Test Temperature: 32°F

• Test Temperature: 25°F

G

• Test Temperature: 20°F

G

Η

• Test Temperature: 10°F

• Test Temperature: 0°F

• Test Temperature: -6°F

- General Findings
 - There is an optimal range for salt concentration in Winter Management Operations.
 - As temperatures decreased ice formed in more solutions
 - Ice crystal formation and salt precipitation was not observed at the macro scale for solutions A (21 wt.%), B (22 wt.%), or C (23.3 wt.%)
 - *Takeaway More NaCl is not better!
 - On average ~ 18% of the weight of the solutions were ice crystals/precipitated salt.

- Measured pavement friction following application of salt brine at varying concentrations
 - concrete and asphalt pavements
 - salt solution concentrations (21%, 22%, 23.3%, 24%, 25%, 26%, 27%, 28%)
 applied as anti-icers at 45 gal/l-m
 - Test temperature: 15°F

• Friction – pull-test

• Friction – pull-test

Friction – Teconer Sensor

Friction – Teconer Sensor

- Summary of Findings
 - The Teconer sensor provided a more consistent and robust friction data set for analysis, compared to the pull-test friction values.
 - Pull-test limited data, triplicates
 - Teconer continuous measurement every second
 - A significant difference in plowed friction values was observed between the concrete and asphalt pavements from the pull-test and Teconer sensor results.

Conclusions

- Salt-phase diagrams are a great information source for studying the chemistry of sodium chloride solutions (brines) and provide key information such as the eutectic point and solubility limit.
- Phase diagrams aid in making informed decisions on deicer type and deicer blend compositions according to needs (e.g., temperature).

Conclusions

- Results from the lab testing produced great images and video of ice, salt crystal formation, and potentially dihydrate salt in solution.
- Bubbles present in the ice crystals, potentially filled with salt brine, may indicate that the solid phase of ice crystals and salt crystals is not pure, and phases can co-exist.
- Therefore, ice formed in the presence of the salt brine may be weaker than ice formed only in presence of pure water.

Conclusions

- Pavement friction values following the application of salt brine at various concentrations varied by:
 - pavement type
 - salt concentration
 - friction measurement technique
 - snow density
 - humidity

One-Page Fact Sheet

Understanding Salt Brine Concentration

Impact of brine concentration on anti-icing operations

Understanding the Salt Phase Diagram - Educational Video

<u>https://clearroads.org/project/20-02/</u>

Final Report & Webinar

• The final report and webinar recording of the final report presentation can be found:

https://clearroads.org/project/20-02/

Questions

- Laura Fay, laura.fay1@montana.edu
- Dr. Xianming Shi, <u>xianming.shi@wsu.edu</u>
- Paul Brown, <u>roadteck@comcast.net</u>
- Doug McBroom, <u>dmcbroom@mt.gov</u>

