Weather "Intelligence"

Observations and Forecasts

2016 PNS Snow Conference Portland, OR June 7-8, 2016

CI

Leigh Sturges Ken Rosenow Ralph Patterson

WEATHERNET

Today's Talk

- Strategic goal: LOS
 - Logistics: Operations
 - Intelligence: Weather information
- Intro: Weather information

• Key environmental measurements

- Air temperature
- Humidity
- Wind
- Pressure
- Visibility
- Precipitation
- Solar radiation
- Soil temperature
- Road temperature
- Road condition
- Concluding thoughts

What it isWhy it matters

Intro: Weather Information

Weather Information

- Weather information is:
 - Field observations
 - Current and historical
 - Forecasts
 - Future state of those observations

All environmental elements that affect road surface state must be considered

Field Observations: RWIS

Forecasts

- Forecasters...
 - 1. Figure out the <u>future state of each element</u>,
 - 2. How it will affect road surface state, and
 - 3. <u>Communicate</u> the part that matters to you
- They do this by combining different inputs:
 - Past environmental conditions
 - Current environmental conditions
 - Model data
 - Mitigation efforts
 - Physical understanding of the system (knowledge and experience)

Environmental Measurements

Air Temperature

- What it is:
 - Air temperature is the average kinetic energy of molecules in the atmosphere

- Why it matters:
 - Affects road surface temp
 - Affects precipitation type
 - Rain-snow level
 - Rate of change through a storm
 - Warm air is less dense _____
 - Cold air is more dense –

Humidity

- What it is:
 - The amount of water vapor in the air
 - <u>Relative humidity</u> Amount of water vapor in the air compared to the amount of water vapor the air can hold – how close the air is to *saturation* (100%)
 - <u>Dewpoint temperature</u> The temperature at which the air would reach saturation

- Why it matters:
 - When used with air temperature:
 - Fog or freezing fog
 - Deposition onto roads
 - When used with road temperature:
 - Wet or frosty roads

Wind: Reading Wind Barbs

Direction and Speed

15 mph WSW wind SE wind t Jordan South Jordan Sandy SSE wind 50 m 30 mph

Wind

- What it is:
 - Physical motion of air
 - Caused by differences in pressure/temperature
 - Varies greatly between the surface and the upper levels

2 June 2016, 5 am

Wind @ 20,000 ft

Large-scale atmospheric waves

ess Alf (Kft.)

Wind

- Why it matters:
 - Blowing snow after precipitation stops
 - Reducing visibility
 - Moderates temperature at night
 - Reduces frost development
- A few specific phenomena:
 - Daily mountain/drainage
 - Gap winds
 - Downslope wind events

Upslope

©The COMET Program

Visibility

- What it is:
 - Distance visible light is able to pass through a medium
- Why it matters:
 - Can give you a sense of how intensely it's precipitating
 - Operational considerations:
 - How visible are your plows?
 - How visible are other obstacles?

Precipitation

• What it is:

- − Hydrometeors
 − Type, intensity, duration
- How we forecast it:
 - Observe moisture upstream (satellite & radar)
 - Model forecasts
 - Knowledge of precipitation forcing mechanisms \neg
- How we measure it:
 - Radar*
 - RWIS sensors

"Pineapple Express"

Radar Basics

- Radars...
 - Emit a radio beam that is reflected off of particles in the atmosphere.
 - Use an antenna to capture the reflected signal back at the radar site.
- The amount of *reflectivity* measured back at the radar represents the amount of precipitation (number and size of hydrometeors).

Radar Coverage in the West

Radar Coverage in the West

Solar Radiation

- What it is:
 - Radiation that comes from the sun
 - Solar radiation is *absorbed by* a surface; surface is heated.
 - Heated surface *emits* infrared radiation.
- Why it matters:
 - Road surface absorbs radiation very efficiently
 - Solar radiation is very susceptible to:
 - Angle—time of year, time of day, latitude
 - Obstacles—cloud cover, terrain, trees, buildings
 - Clouds block radiation during the day, but hold it in at night
 - Like a blanket

Soil Temperature

- What it is:
 - Temperature of the pavement's underlying structure
 - Usually measured at 18" depth

- Why it matters:
 - Heat retention and transfer to pavement surface
- Think about how not having a substrate—i.e., bridge deck—affects pavement temperature.

Road Temperature

- What it is:
 - The amount of infrared radiation emitting from the pavement
 - Dependent upon solar radiation, subsurface temperature, and air temperature

• Why it matters:

- Dictates road surface state:
 - How precipitation will behave when it contacts surface
 - Development of frost (when used with dewpoint)
- Dictates which chemicals to use

Road Condition

- What it is:
 - The physical state of water on the pavement surface: none/dry, damp, wet, ice, snow, slush
 - Or the grip/friction of the surface
 - Or the eutectic (freezing) point of the watersalt solution
 - Or dry salt residual

• Why it matters

- Being able to measure this through a storm helps to determine further mitigation efforts
- Verify mitigation results throughout a storm
- Informs how chemicals will/will not adhere

Camera Image

- When the camera image is helpful:
 - Helping you learn meaning of RWIS data
 - Verification of snow on roads
 - Visibility
 - Wet vs dry roads
 - Traffic congestion
- When the camera image is *not* helpful:
 - Falsely identifying icy vs wet -
 - No way to determine friction -
 - Lack of light at night
 - Snow-packed camera lens

Icy or wet?

So you know the road is salty, but can you tell the freezing point? Surface friction?

What (More) Can RWIS Do For You?

Before the RWIS is installed:

- Site RWIS in strategic locations
 - Use the right sensors for the right spot
 - Think outside the box
 - Work with partners
 - Have a 5-year plan

Good practice for operations:

- Perform twice-annual calibration and preventative maintenance(!)
- Make room for response maintenance
- Quality control the data
- Metadata...metadata...metadata
- Archive the data and make it readily accessible
 - Post-storm analyses (what went well, what didn't, and why?)
 - Use for training or performance measurement
 - Severity indices

ITD's performance scale

What (More) Can A Forecast Do For You?

- Ask yourself: Where is the human in the loop?
- Humans are important, because...
 - Forecasting the weather is still an art
 - Humans can recognize patterns and make comparisons to prior storms
 - Humans can communicate uncertainty in human terms, not just statistical or probabilistic terms
 - Humans can be descriptive and nuanced in their communication
 - If something changes, the human can relay that at that time and can describe the change to the crew
 - Can more easily adjust their biases and errors than a model
 - Mountain weather is important in the west, and models don't handle it well

Questions?

Ralph Patterson Leigh Sturges Ken Rosenow The Narwhal Group Weathernet 406-580-9626 leigh.sturges@narwhalgroup.com

425-644-8468 ext 1103 kenr@nw-weathernet.com

Barometric Pressure

- What it is:
 - The weight of a column of air over a given area at ground or sea level
- Why it matters:
 - Important for meteorologists denoting a change in the weather
 - Pressure, temperature and wind are all related
 - Used to forecast...
 - Wind storm development
 - Daily coastal weather
 - Strength of cyclones

top of atmosphere

ground

The Physics of the Forecast

- How do we estimate the future state?
- A weather model:
 - 1. Collects observations
 - 2. Builds an estimate of the current atmosphere
 - 3. Estimates the future of the atmosphere
 - Using physical and thermodynamical equations
- Forecasters understand the science and know how to communicate what matters to you

Key Trouble Spots

- Low areas (cold pooling)
- Areas by water (humidity)
- Bridges
- Shady spots (solar radiation; terrain, buildings, trees)
- Gaps in terrain (wind)
- Summits and lee slopes (orographic enhancement)
- But that doesn't necessarily mean you put your RWIS there

Seasonal Forecasts

- What you'd want to know and what they might include
- Why they should not be used to make operational plans

Summary

• Bring it back to the operational goal: good intel builds your logistical plan, helping you reach your goal efficiently