

Why Data?

- Asset Management
- Performance Measures
- Situational Awareness

Historical Knowledge

Data Sources

- Roadside
- Vehicle Fleets
- Agency Databases
- Services/Vendors

Roadside Data

- Data Collection Technologies
 - Spot Data: Loops, radar, video, microwave, RWIS, LPR
 - Speed, Volume, Occupancy, Classification, Road & Weather Conditions
 - Section Data: Video, Bluetooth, Wi-Fi, LPR
 - Speed & Travel Time, Volume, Conditions

Mobile Data

- Fleet Management Systems
 - Location
 - Action/Status
 - Conditions
 - History
 - Vehicle Characteristics

Internals Sources of Data

- Typically Historical
 - Accidents
 - Incidents
 - Radio Logs
 - Video Logs
 - Work Logs

External Data Services & Sources

- Weather Universities, Weather Services, Federal (NOAA, etc.), Others
- Data Services Inrix, HERE, Others

Understanding Data Services

- What Are the Business Models?
 - Data: quality, reporting cycle, science, costs
 - Data sharing and use limitations/restrictions
- What is Actually Being Offered?
 - Raw Data ⇒ Integrated Data ⇒ Processed Data ⇒ Information

Matching the Data to Your Need

All Data is Not Created Equal

BAD DATA IS NO Better than no Data.

8

So, before we talk about where we are headed – any questions?

What the Future Holds

The Coming of the Connected & Autonomous Vehicle

- What is this?
- Timing
- The Data Considerations & Tradeoffs

CAV – <u>Connected Autonomous Vehicle</u>

Connected Vehicle

Communicates with nearby vehicles and infrastructure; Not automated

Connected Automated Vehicle Leverages autonomous automated and connected vehicles

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

CAV Conductivity

 Vehicles Use Wireless Communications to Provide Connectivity: v2v - Between vehicles of all types

V2I - Between vehicles & roadway infrastructure
V2X - Between vehicles & others (bikes & peds)

In 2013 NHTSA determined the future of light vehicle technology. They chose to pursue a Rulemaking requiring vehicles to be equipped with **V2V** communications. Some manufactures have already stated installing the equipment.

NHTSA's next action is a ruling on heavy vehicles

Source: NHTSA (Modified)

DSRC (5.9 GHz <u>Dedicated Short Range Communications</u>)

- Set aside for transportation
- RSU (Roadside Unit) ~ \$5K + backhaul
- Short Range 300 yds
- Path interference
- Requires backhaul
- Data from car:
 - Broadcast 10 times/sec

What about cellular?

When Does This Start to Matter?

- A limited number of cars being sold today that are already connected.
- NHTSA Ruling means that by the 2020 model year all new cars sold will be connected
- The average age of a car on the road today in the US is 11.4 years. (254M cars)
- By approximately 2032 the vast majority of cars on the road will be connected.

What percent of cars need to be connected before it matters?

CAV Data – The <u>Basic</u> <u>Safety</u> <u>Message</u>

BSM Part 1 - <u>Required</u> Transmitted - 10 times/sec How - DSRC	BSM Part 2 - <u>Optional</u> Transmitted - <u>Vendor Specific</u> How - <u>DSRC/Cell ?</u>	
Location	Exterior lights	
Speed	Hazard lights	
Heading	Wiper status	
Acceleration	ABS activated	
Brake applied status	Traction control loss	
Traction control system status	Stability control activated	
Antilock brake system status	Is raining/rain rate	
Stability control system status	Other precipitation	
Vehicle size/weight	Roadway friction	
	Solar radiation	
	Ambient air temperature	
	Ambient pressure	

The BSM is not the same thing as OEM telematics

CAV Data – Requires Equipment!

The Two Conflicting Sides of the CV Equation

- For V2I to work:
 - We need agencies to be able to receive and transmit data and information via roadside units.
 - We need OEMs to write and install applications within their vehicle software systems to send, receive, process, and use that data.
- But....
 - Agencies don't want to invest in V2I until significant connected vehicles are on the road that can leverage the investment.
 - OEMs don't want to invest in applications until significant roadside infrastructure is installed to make them useful to their customers.

What is in the Works?

- AASHTO/ITSA/ITE have convened a V2I Deployment Coalition composed of owner/operators and OEM
 - Focused on helping move V2I forward is looking at a national deployment challenge.
- AASHTO also has a Connected/Autonomous Working Group of owner/operators
 - Focused on providing guidance to USDOT

What is in the Works?

- USDOT is working on a:
 - A Vehicle to Infrastructure Deployment Guidance Document
 - Will cover many aspects of helping to understand and plan for deployment Due out this summer
 - A Guidance for Weather Responsive Traffic Management Strategies Using Connected Vehicle Data Document

Will cover fleet and public applications - Due out next spring

 WYDOT has a project underway along I–80 to demonstrate CV technology for winter road operations and travel information.

Considerations

More data availability – Real or perceived More expectation of data driven processes More demand for sophisticated data management

- More reliance on external services: Data processing, security, backhaul, etc.
- More equipment/contracts to support: Roadside, mobile, back office, etc.
- More software
- More need for supporting skill sets technical and analytical

Difficult Decisions Ahead: Investment strategies, trade-offs, compromises, & managing expectations

The Autonomous Promise

