

Who is Paul Johnson?

- Operations Manager, County of Wellington
- 28 years with the County
- Studied liquids for 28 years
- Past President of the Ontario Good Roads Association
- Past-chair of Ontario Road Salt Management Group
- Chair of Training Sub-committee of ORSMG
- Member of EC Multi-Stakeholders Working Group on Salt Management
- Member of Winter Maintenance Sub Committee APWA

What am I going to talk about

- How we started with liquids
- What we learned
- Mistakes we made
- Results we have seen
- Equipment changes

So let's begin

- 40 years ago sand and salt were the only game
- Sand was and still is used to promote traction. It has no melting abilities on it's own.
- Salt is added to stockpiles to keep piles from freezing.
- But sand use led to air and water quality issues.

Salt

- Initial use was to keep sand piles from freezing.
- Salt in sand helped the mixture perform.
- Straight salt works well above -9°C or 15°F

Pounds of Ice Melted Per Pound of Salt Pavement Temp. 'F One Pound of Salt (NaCl) Melt Times 30 46.3 lbs of ice 5 min. 14.4 lbs of ice 20 in. 15 6.3 lbs of ice 10 min. 10 4.9 lbs of ice 10 min. 10 7 10 min. 10 10

How we started using liquids

In 1975

- Convinced liquids would help
- Steel tanks with steel lines
- Calcium chloride

Results

- Sand and salt worked better
- Tanks and lines lasted only 2 winters so in 1978
- We went to CTS "Calcium Treated Sand"

How did that work?

Liquid Calcium chloride was added at about 20 liters or 5 gallons /ton

plus

■ 10 % salt

but

 We lost half the calcium out the door from leaching and it cost 4 time cost of sand with 5 % salt

Plus

- We had to put up 2 piles of sand
- One with just 5 % salt and one with CTS
 - Because we provided sand to our smaller municipalities and CTS would defrost a gravel road

Experimented

I studied the cost of sand and salt versus CTS

By

 Comparing application rates, frequency of applications and time to achieve desired level of service

Results

- Clearly showed
 - CTS was not economical
 - We needed onboard tanks with on demand application of liquids
 - So in 1992 we added computerized controls for liquids and solids and using Calcium Chloride.

■ What we didn't know in 1975 was how much sand and or salt would stay on the road when it was pre-wet. Years later experiments from Michigan confirmed what we suspected.

I have 4 maintenance areas with 2 works garages each.

In 1997 I switched one of our 8 works garages to Magnesium Chloride plus an agricultural base product.

The experiment

- At the one garage I had
 - 3,000 of sand with 5% salt in the dome
 - 3,000 of sand with liquid and no salt outside
 - 2,000 gallons of mag and agricultural product
 - 500 tons white salt
 - 500 tons pre-mixed salt (liquid added and put into stock pile.
 - Same foreman for this and sister garage
 - Staff switch garages every 2 weeks

The results

- Sand in the dome was never used that winter
- All the sand outside was used
- Liquid was added as necessary as temperatures dropped
- The garage with regular sand and salt and no liquids
 - Used 55 % more sand and 25 % more salt then the other garage
 - Roads took longer to reach same level of service

What next?

- The next year both garages same products
- Following year all 8
- Started pre-mixing sand because
 - liquid storage inadequate
 - only 50 % of fleet had pre-wet capability
 - Easier to add liquid into stockpile then store it for pre-wetting

- Since 1997 we have tried 10 different products
- Over the last 6 years we have settle on a Mag and corn based produce.

Then what?

- In 2002 we started pre-mixing salt
- Added much larger tanks and two 2,000 gallon anti-icing trucks
- 75 % of fleet was now pre-wet capable

However there were disadvantages to pre-mixing

- Hard to co-ordinate material (sand/salt), stacker, pug mill, loader, and liquid without rain.
- Usually one fill, part fills not economical
- Typically salt is a "just in time" product, not stockpiled New "Thawrox"
- Leaching can occur

So what about pre-wetting?

The application of a liquid deicer just before the sand and/or salt hits the road.

Advantages

- More liquid can be added than in stockpile
- Increase or decrease liquid application as temp. change
- 25 % savings in salt used
- Up to 60 % saving in sand used

The Disadvantages

- Computerized/liquid controls costly
- Onboard liquid tanks and pumps
- Site storage of liquids
- More costly in short term but will pay for themselves during the life of the truck
- Additional training required for:
 - Liquids
 - Controllers

In 2001 we started Anti-icing

a concept in which a liquid, or a pre-wetted salt, is spread directly onto the pavement before the storm begins.

Advantages

- Prevents bonding of snow and /or ice to road (Studies have shown it costs 5 times more to break the bond than to prevent the bond.)
- Faster cleanup
- Applied in better weather
- Doesn't get plowed off
- Equipment is fairly easy to make

Disadvantages

- Need better weather forecasting
- Cannot be used for gravel roads
- Larger liquid storage tanks

Liquid Storage

- We had 8 of these 2,000 gallon tanks one at each of our 8 work yards.
- We now have 100,000 gallons storage capacity

Our Anti-icing test sites

- 8 test sites, one per maintenance garage
- Each 2 km or 1.2 miles long
- Positioned on flat, straight roads, with shallow ditches
- Half the length along open fields other half adjacent to tree line
- On roads with different N-S and E-W direction
- Applied only liquids

Test Site 1.2 miles SALT/SAND SPRAYED AREA SALT/SAND SPRAY ONLY Combined SPRAY ONLY Semblined SPRAY ONLY Semblined SPRAY ONLY Semblined O.3 m O.9 miles O.3 m 4 different combinations: salt only, salt on top of liquid, straight liquid, liquid on top of salt.

Results

- Salt only- worked well but bonding occurred in lower temperatures
- Salt on top of liquid- liquid prevented bonding, salt prolonged dilution
- Straight liquid- liquid prevented bonding but eventually diluted
- Liquid on top of salt- salt started melting action to break bond, liquid sped up melting and broke bond.

What have we learned about Anti-icing?

- It is not for every road
- More is not better
- Different road types (surface treated versus new asphalt versus concrete) different application rates
- Time of day, specific lanes different results
- Start slow
- Get lots of info on what liquid can do and can't do

Now what about De-icing?

an operation where a deicer is applied to an accumulation of snow, ice, or frost that is bonded to the pavement surface.

Advantages of liquids verses solids

- Works much faster than straight salt
- Residual liquid becomes an anti-icing operation
- Improved level of services

Disadvantages

Re-active rather than pro-active

On Demand Pre-mixed Salt?

- Basic rock salt, encapsulated with a high-performance liquid
- A deicer with increased performance and environmental friendliness

Let's get something straight!!

LIQUIDS are:

- the most misunderstood
- the most underutilized and,
- the most misused tool available to you to fight winter!

What have we learned?

- Once wetted with Liquid:
 - Salt works faster
 - Increases penetration
 - Less blow-off
 - Less bounce and scatter
 - Increased level of service
 - Environmental Savings

Some Facts about LIQUIDS?

- Liquids are already in solution
- They act more quickly a strength
- They dilute more quickly a weakness
- Never use with rain (except for prewetting)
- Never put on top of compact (unless you are using a very hot product)
- More is not better, especially early in the season

Corrosion Concerns

Because liquids are already in solution:

- corrosion quicker than solid chemicals. (if using a liquid that is corrosive)
- Major and valid concerns about equipment and infrastructure damage (depends on the liquid)
- Some concerns seem to be more perception than reality (misunderstanding)

Chemical Slickness

- Know what you are applying
- Equipment is calibrated
- Let the temperature drop before you make that first application
- Be especially careful after long dry spells
- Reduce application rates early in the winter
- Half rate for first application

Conclusions on Liquids

- Liquids are not for melting snow and ice
 - use them to prevent and/or break the bond instead
- Road surface temperature not air temperature
- We need liquids under the snow anti-icing gets them there faster
- If we are going to anti-ice, know the limitations as well as the benefits

More Conclusions

- Use liquids that mix well and stay mixed
- Effective temperature more important than Eutectic.
- The more Viscous the better
- Exothermic liquids better than Endothermic
- Have liquid specific training

Calibrating Spreaders

- Ensure accurate discharge of material
- Recalibrate at least annually and periodically as required
- Gate setting is tied to calibration
- Ensure gate setting is matched to material being applied

http://www.saltinstitute.org/snowfighting/6 -calib.html

http://www.ogra.org

Washing Equipment

•Wash vehicles at the completion of every storm event

 Wash vehicles indoors

- •All wash water should be properly managed
- •Use oil/grit separator
 •Clean routinely

